Olivier Gamache

Olivier Gamache

Started on
olivier.gamache@norlab.ulaval.ca

Expertise: Camera, localization, snow, forestry

Follow me:
Google Scholar Google Scholar
Linkedin Linkedin

Olivier Gamache is a PhD student at Norlab, under the supervision of Pr. Philippe Giguère. He graduated in physics engineering at Polytechnique Montréal in 2020. His work mainly focuses on improving the visual SLAM algorithms forest and winter conditions. He is also a member of the laboratory’s team for the DARPA - Subterranean Challenge.

Education

  • Bachelor’s degree in Physics Engineering at Polytechnique Montréal, 2020

  • Master’s in computer science at Université Laval (Fast-track to PhD), 2020

Publications

Journal Articles

  1. Baril, D., Deschênes, S.-P., Gamache, O., Vaidis, M., LaRocque, D., Laconte, J., Kubelka, V., Giguère, P., & Pomerleau, F. (2022). Kilometer-scale autonomous navigation in subarctic forests: challenges and lessons learned. Field Robotics, 2(1), 1628–1660. https://doi.org/10.55417/fr.2022050
     PDF Publisher  Bibtex source

Conference Articles

  1. Gamache, O., Fortin, J.-M., Boxan, M., Vaidis, M., Pomerleau, F., & Giguère, P. (2024). Exposing the Unseen: Exposure Time Emulation for Offline Benchmarking of Vision Algorithms. ArXiv Preprint ArXiv:2309.13139, Accepted to the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.48550/arXiv.2309.13139 Accepted
     Publisher  Bibtex source
  2. Fortin, J.-M., Gamache, O., Grondin, V., Pomerleau, F., & Giguère, P. (2022). Instance Segmentation for Autonomous Log Grasping in Forestry Operations. Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 6064–6071. https://doi.org/10.1109/IROS47612.2022.9982286. Finalist for Best Paper Award on Agri-Robotics! Accepted for oral presentation, arXiv preprint arXiv:2203.01902
     Publisher  Bibtex source

Miscellaneous

  1. Gamache, O., Fortin, J.-M., Boxan, M., Pomerleau, F., & Giguère, P. (2024). Field Report on a Wearable and Versatile Solution for Field Acquisition and Exploration. In presented to the 2024 Workshop on Field Robotics from IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.48550/arXiv.2405.00199
     Publisher  Bibtex source