Proprioception Is All You Need: Terrain Classification for Boreal Forests
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Abstract— Recent works in field robotics highlighted the im-
portance of resiliency against different types of terrains. Boreal
forests, in particular, are home to many mobility-impeding ter-
rains that should be considered for off-road autonomous navi-
gation. Also, being one of the largest land biomes on Earth, bo-
real forests are an area where autonomous vehicles are expected
to become increasingly common. In this paper, we address the
issue of classifying boreal terrains by introducing BorealTC,
a publicly available dataset for proprioceptive-based terrain
classification (TC). Recorded with a Husky A200, our dataset
contains 116 min of Inertial Measurement Unit (IMU), motor
current, and wheel odometry data, focusing on typical boreal
forest terrains, notably snow, ice, and silty loam. Combining
our dataset with another dataset from the literature, we eval-
uate both a Convolutional Neural Network (CNN) and the
novel state space model (SSM)-based Mamba architecture on
a TC task. We show that while CNN outperforms Mamba on
each separate dataset, Mamba achieves greater accuracy when
trained on a combination of both. In addition, we demonstrate
that Mamba’s learning capacity is greater than a CNN for
increasing amounts of data. We show that the combination of
two TC datasets yields a latent space that can be interpreted
with the properties of the terrains. We also discuss the impli-
cations of merging datasets on classification. Qur source code
and dataset are publicly available online: https://github.
com/norlab-ulaval/BorealTC.

I. INTRODUCTION

With the ongoing development of field robotics, it has
become common for robots to navigate through increasingly
complex and challenging terrains [1]. To prevent and handle
situations where an uncrewed ground vehicle (UGV) may
get stuck or immobilized, vehicles must be able to accurately
assess and identify the terrain they are navigating on. Such
terrain awareness is often framed as a classification problem
over the different terrain types a UGV might traverse [2], [3].
The problem of terrain classification (TC) has been applied
in many contexts, including traversability assessment [I],
terrain-aware path planning [4], and as a prior for predicting
energy consumption [5].

Although being the largest land biome on Earth [6], bo-
real forests have received little attention for the development
of autonomous navigation. Moreover, terrain awareness is
essential in the context of the boreal forest, where a mul-
titude of terrain types can significantly hinder the mobility
of UGVs [7]. Subject to large seasonal variability, boreal
forests are especially suitable for developing systems that are
capable of multi-seasonal navigation [8]. Hence, TC in these
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Fig. 1: An example of challenges caused by terrain in boreal
forests. A small UGV with a controller relying on a friction
coefficient expecting concrete will struggle to follow a path
when confronted with complex ground-wheel interactions.

regions is essential to the advancement of field robotics in
more challenging conditions.

Although a traversed terrain can be determined with cam-
eras [2], this approach is not universal for in-situ TC, depend-
ing on environmental conditions. For example, boreal forests
challenge conventional visual-based TC, as their dense conif-
erous canopies obstruct the sunlight, yielding low visual fea-
ture contrast [7]. Furthermore, boreal forests are in regions
with large illumination variances, having shorter days during
winter. Hence, a TC method that relies on light does not work
anytime in winter when light is usually scarce [9]. While
lidars can be used in low lighting conditions, they provide
little semantic information about the nature of the surface,
given they only provide geometric information from the sur-
roundings [10]. Both cameras and lidars are influenced by
adverse environmental conditions such as snowstorms [11],
heavy rain, or fog [12]. Finally, as illustrated in Figure 1, the
terrain configuration in boreal forests can be quite complex,
and only a thin layer of snow accumulation can hinder the
capacity of visual sensors to see the ground composition.
This occlusion is particularly true when a fresh layer of snow
covers loam or ice, derailing controllers that assume a con-
stant friction coefficient [13]. In this context, proprioceptive
sensing is more robust for TC in harsh conditions [3], such
as those found in boreal forests.

For practical reasons, many authors have gathered terrain
data indoors, in urban settings, or on university campuses,
where terrain usually does not impede movement [2], [5],
[14]. In contrast, our work focuses primarily on off-road
terrains that pose challenges for wheeled skid-steering mo-
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bile robots (SSMRs). In particular, we consider deep snow,
known for immobilizing wheeled SSMRs [7]; ice, a rigid
slippery surface; and silty loam, a muddy and slippery soil
that hampers rotations.

Current approaches in TC generally incorporate temporal
aspects, either through frequency domain representations or
by employing recurrent models. Building upon these foun-
dations, we introduce two models. Our first model improves
upon previous Convolutional Neural Network (CNN) base-
line architectures applied to spectrograms generated from
proprioceptive sensor data. We employ recent deep learning
techniques and integrate windowing functions when comput-
ing spectrograms to improve the model’s performance. The
second model draws inspiration from recent advancements
in state space models (SSMs), specifically the Mamba archi-
tecture introduced by Gu et al. [15]. Mamba is a promising
approach for TC, due to its ability to apply selectivity on raw
sequential data while scaling linearly with sequence length.

The main contributions of this paper are (i) BorealTC, a
novel dataset for TC with wheeled SSMRs in wintry off-road
conditions; (ii) an improvement on state-of-the-art methods
for data-driven TC based on CNNs; (iii) the exploration of
SSM-based models for TC; and (iv) a study of the challenges
of merging datasets acquired by different UGVs of the same
model.

II. RELATED WORK
A. Sensor modalities

Exteroceptive sensors have been extensively used for ter-
rain classification (TC), as they can predict terrains at a dis-
tance. Among these sensors, cameras stand out for their abil-
ity to capture appearance-based features, providing valuable
insights into the physical nature of surfaces. For example,
Atha et al. [4] classified terrain from Martian rovers’ mast
camera images. Walas et al. [16] classified terrains from lidar
data, by creating intensity-based and geometry-based feature
vectors. TC can also benefit from the combination of sensors
employing different modalities. For instance, Schilling et al.
[10] leveraged both geometric and appearance-based features
from lidar and camera data to assess terrain traversability.
Audio signals have also been combined with camera im-
ages [2], [14] and radar scans [12] for TC. Proprioceptive
data were used with camera images to classify terrain in both
agricultural [17] and urban contexts [18]. While exterocep-
tive sensors offer many advantages, they can be significantly
challenged in boreal forests. For instance, cameras will suffer
from illumination variability [7], [9]. Moreover, lidars are af-
fected by inclement weather and extreme precipitation [11],
[12], typical of the same region.

To circumvent these limitations, an alternative approach
is to base terrain classification primarily on proprioceptive
data. Proprioceptive sensors present the advantage of directly
informing about the physical characteristics of a surface
through their impact on the dynamics of a UGV. Hence, they
do not require an unobstructed line of sight with the sur-
face, nor do they rely on surface illumination. Common pro-
prioceptive sensors are Inertial Measurement Units (IMUs),

wheel odometry, and motor ammeters, with the latter provid-
ing indirect torque measurements. IMUs yield accelerations
that can be used to classify terrains. These measurements
are especially useful for legged robots, where the body is far
from the ground [19], [20]. For finer surface information, the
accelerometer can be dragged on the ground [21], bypassing
the damping effect of legs or wheels. In addition, actuator
and haptic signals can be leveraged for TC when dealing
with legged robots. For example, leg force measurements
from the Messor walking machine [22] or leg haptic signals
from an ANYmal walking robot [23] can provide valuable
information for classification. Allred et al. [5] also classified
terrain using leg joints data, in conjunction with images of
the front-facing camera of a Spot robot. For wheeled robots
with encoders and IMU, Reina et al. [24] have shown that
proprioceptive data can be used to evaluate slip and motion
resistance coefficients to predict the terrain on which a UGV
was driven. By adding motor currents to wheel velocities,
and IMU, Vulpi et al. [3] demonstrated a mean accuracy of
91.5 % for TC over four types of terrain. Given that relying
on proprioceptive sensors to record terrain signatures will be
strongly related to the sensor placement, the geometry of the
robot, and the type of locomotion, we will use their data in
combination with ours to analyze domain shift, which makes
knowledge transfer between vehicles challenging.

B. Methods for classification

Earliest approaches involved expert systems [24] and
Support Vector Machines (SVMs) for lidar-based [16] and
vibration-based terrain classification (TC) [17], [20]. Yet,

this family of Machine Learning (ML) techniques has the
drawback of relying on features that were hand-crafted with
a priori expert knowledge, which adds an inductive bias to
the learning.

More recently, deep learning approaches have gained pop-
ularity due to their representation learning capabilities and
their ability to process any type of sensor information. For
instance, CNN architectures have been used to classify ter-
rains based on camera images [4], [5], [18]. In the case
of [18], the incorporation of proprioceptive data through a
second parallel network improved classification accuracy.

Inspired by speech recognition applications, 1-D data,
such as IMU-recorded vibrations and audio signals, are often
transformed into frequency representations. One example of
this technique is the utilization of short-time Fourier trans-
form (STFT)-based spectrograms by Vulpi et al. [3], who
employed a CNN to classify terrains with proprioceptive data
from an IMU and the drive system of a UGV. Similarly, Ziirn
et al. [2] applied the same type of spectrogram for unsuper-
vised acoustic feature learning. These learned acoustic fea-
tures are part of a self-supervised framework for audiovisual-
based TC using neural encoders. Likewise, Ishikawa et al.
[14] employed Variational Auto-Encoders (VAEs) and a
Gaussian Mixture Model (GMM) to learn terrain types from
audiovisual data autonomously. In their approach, the audio
signals were represented as Mel-frequency cepstral coeffi-
cients (MFCCs), again inspired by speech recognition tech-



niques. Building upon these methods, our CNN classifier
uses a STFT-based spectrogram. In contrast to Vulpi et al.
[3], we demonstrate that applying a windowing function mit-
igates spectral leakage.

Another way to process 1-D time series is to input them
into a neural network designed for sequential data. In such
cases, recurrent networks like Long Short-Term Memorys
(LSTMs) are commonly used. Allred et al. [5] achieved high
accuracy on TC by applying a LSTM on the joint data of a
legged robot. A more complex variant of Recurrent Neural
Networks (RNNs), a convolutional LSTM (C-LSTM), was
used by Valada et al. [25] for audio-based TC on MFCCs.
As Vulpi et al. [3] demonstrated, the CNN architecture is
more stable and more accurate than LSTM and C-LSTM for
proprioceptive-based TC on a wheeled UGV, hence these
methods won’t be investigated.

In addition to LSTM-based approaches, other methods in-
spired by natural language processing (NLP) have emerged
for TC. Transformers, in particular, have recently been
proposed to process long sequences and classify terrains
as accurately as RNNs [23]. However, the performance
of transformer-based approaches comes at the expense of
quadratic scaling, in proportion to the sequence length. To
address this limitation, other RNN-like approaches have
been suggested. Most notably, Gu et al. [15] introduced
Mamba, a SSM-based architecture that offers significant per-
formance gains while scaling linearly. While Mamba aligns
with the recurrent nature of RNNGs, it distinguishes itself by
employing selectivity, emphasizing key time steps in data
sequences while leveraging its operations’ parallelism. Al-
though Mamba has been shown to beat recent architectures
in various downstream tasks such as DNA sequence classifi-
cation [15], its application to TC remains unexplored. There-
fore, we evaluate the potential of Mamba for this task.

C. Datasets for terrain classification

For practical reasons, some studies have focused their ef-
forts on classifying data acquired indoor [16], [22], [23] or
in urban environments [5], [14], [25]. For example, wheeled
UGVs were recently used for multi-modal data acquisition in
urban areas, such as for the Freiburg Terrains and the Jackal
robot 7-class terrain datasets [2], [18]. Terrain classification
(TC) was explored in various off-road contexts, such as an
experimental farm [3], [17], [24], a volcanic island [20], and
Mars [4]. Given that the boreal forest remains covered in
snow for at least half of the year, any dataset covering such
an environment ought to include data on snow and ice. These
two wintry terrains have been studied with legged robots [5],
[19]. However, to the best of our knowledge, no publicly
available TC datasets contain labeled snow and ice data from
a wheeled UGV.

Many have publicly released their datasets to help gen-
eralize classification across different kinds of terrains [2]-
[51, [18], [23]. Aligned with this endeavor, we propose
BorealTC, a publicly available dataset containing anno-
tated data from a wheeled UGV for various mobility-
impeding terrain types typical of the boreal forest. Our data

were acquired on deep snow and silty loam, two uncom-
mon terrains in an urban setting, both in winter and spring.
Additionally, to encompass a variety of wintry terrains, we
recorded data while driving our UGV on an ice rink. Our
dataset also includes experiments on asphalt and flooring,
two prevalent terrains in recent datasets. These types of ter-
rain facilitate the comparison of the learned representations
of our models with those obtained from other datasets.

III. METHODOLOGY

We propose an approach to classify terrains using propri-
oceptive data from an IMU, and the drive system of a UGV.
Figure 2 shows the general overview of the pipeline used
for the evaluation. Following Vulpi er al. [3], we divided
our sensor signals into 5s partitions. These partitions were
then split into train and test subsets, to evaluate the perfor-
mance of our models with a k-fold cross-validation strategy.
To overcome the class imbalance in the data, the partitions
in both subsets were oversampled, such that all classes have
the same number of samples. Subsequently, two models were
applied to each sample: a CNN and a Mamba classifier.

A. Convolutional Neural Network

Following the method of Vulpi er al. [3], we apply a
CNN to spectrograms generated from proprioceptive data.
The spectrograms were computed on each 1.7s sample by
applying STFTs with a window length of 0.4 s and an over-
lap of 0.2s. The original implementation [3] applied the
STFT directly on these small windows, which is equivalent
to applying boxcar filters. This filter results in spectra with
artifacts, called spectral leakage, that must be avoided [26].
Instead, we use a Hamming window w [n], such that

w[n]:ao—(l—ao)-cos(;:::i), (1)
for 0 < n < Nyin, with Ny, being the number of samples
per window in the STFT and ag = 0.54 [27]. As in Vulpi et
al. [3], the resulting spectrograms of each channel were then
padded, concatenated, and fed as an input to the CNN. The
convolution operations of the CNN were performed across all
channels of the spectrograms, by moving the kernel through
the frequency-time planes.

B. Mamba

In light of state-of-the-art results on multiple tasks in-
volving sequential data, we suggest using the Mamba archi-
tecture [15] for terrain classification (TC). Based on recent
work with discrete SSMs, Mamba introduces attention-like
selectivity and recurrent-like parallel associative scanning for
linear scaling in sequence length. Notably, Mamba obviates
the necessity for domain-shifting the samples to spectro-
grams, and consequently the need for preprocessing steps,
like padding or downsampling, required by CNNs for data
uniformity. Mamba thus directly processes the proprioceptive
data in its sequential form, making it a promising solution
for proprioceptive-based TC.
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Fig. 2: Overview of the training process. From the left, data from asynchronous sensors were recorded and hand-labeled
according to the terrain on which the robot was driven. To allow a 5-fold cross-validation, trajectories are split into 5s
partitions. Classes are then rebalanced through oversampling before being fed to the different networks. The CNN performed
classification on spectrograms, while Mamba classified the samples directly in the time domain.

IV. EXPERIMENTS

In this section, we first describe the platform used to record
the BorealTC dataset. We then give details about the terrain
and highlight differences between ours and Vulpi dataset.
We finally give implementation details for both ML archi-
tectures used in our analyses.

A. Vehicle and sensors

Our dataset was recorded with a Husky A200, a wheeled
UGV from Clearpath Robotics (Kitchener, Ontario, Canada).
The Husky is a SSMR with a weight of 70kg and a wheel
baseline of 0.6m. While the UGV has four wheels, the
wheels are mechanically coupled with timing belts, such that
a single gearmotor drives two wheels on the same side of the
vehicle. The motor currents are measured by MDL-BDC24
motor drivers, while the wheel speeds are collected using op-
tical encoders mounted at the output of the gearmotors. Both
currents and wheel velocities are provided by the Husky at a
rate of 6.5 Hz. The robot is also equipped with a Xsens MTi-
30 IMU, which records three angular velocities and three
linear accelerations at a frequency of 100 Hz. To ensure con-
sistency with the data of Vulpi et al. [3], the IMU data was
transformed to the base reference frame of the robot, using
the Coriolis formula as described by Deschénes et al. [28].
Finally, all sensor data was recorded with Robot Operating
System (ROS) 2. The robot and its sensors are shown in
Figure 1.

B. Dataset description

Our BorealTC dataset was collected by driving the
Husky on five different types of terrains, namely ASPHALT,
FLOORING, ICE, SILTY LOAM, and SNOW, as shown in
Figure 3. ASPHALT, FLOORING, and ICE data were ac-
quired in an urban setting, on the campus of Univer-
sité Laval (46°46'52.47"'N, 71°16'27.74"W). ICE data was
recorded on an ice rink on the same campus, ensuring
that the ice was consistent between experiments. SILTY
LOAM and SNOW data were taken at Forét Montmorency
(47°19'19.29”"N, 71°8/50.13”"W), the experimental boreal

forest of Université Laval, 75 km north of its main campus.
During all seasons, excluding winter, the soil of Forét Mont-
morency is a podzol typical of boreal forests. More specif-
ically, the trails on which the Husky was driven are dug in
the silty loam layer of the podzol. As we recorded the SILTY
LOAM data at the end of the winter, the silty loam was satu-
rated in water, making it slippery. All the data were collected
on relatively flat surfaces, with a pitch smaller than 5°, to
avoid effects from the slope of the terrain on the classifica-
tion.

To better evaluate our methods, we used our BorealTC
dataset in conjunction with the Vulpi dataset [3].
As the data follows the work of Reina et al [17],
which was recorded in San Cassiano, Lecce, Italy
(40°3/35.40”"N, 18°20'50.98”E), we extrapolate that the
dataset comes from the same location. As with our dataset,
the Vulpi dataset was collected with a Clearpath Robotics
Husky, meaning that both datasets were acquired with vehi-
cles of similar dimensions and weights. While the acquisition
rates of our IMU and wheel data are at 100 Hz and 6.5 Hz
respectively, the Vulpi dataset has a rate of 50 Hz for their
IMU and 15Hz for their wheel data. A summary of both
BorealTC and Vulpi datasets is given in Table I, where
the ranges of motion commands that were sent to the UGV
are compared for each class. This comparison is done by
computing the median - and the interquartile range (IQR) of
the absolute values |v,| and |w,| of the linear and angular
velocities. Notably, our BorealTC dataset is an order of
magnitude larger and contains a total of 116 min of sensor
data, while Vulpi contains 13 min. In addition, our dataset
includes a significant amount of data with rotational motions,
such as turns-on-the-spot, while the Vulpi dataset contains
mostly forward linear motions. The inclusion of rotational
motions enables a better representation of the entire input
space of a UGV [13], and is thus crucial for accurate terrain
modeling.

C. Implementation details

As our preprocessing pipeline is inspired by Vulpi et al.
[3], we ported their publicly available MATLAB implemen-



Fig. 3: Types of terrains considered in our dataset. From left to right: silty loam, deep snow, asphalt, flooring, and ice.

TABLE I: Description of our BorealTC dataset and the
Vulpi dataset [3]. For each class, we give the number N of
5 s partitions, the location (Loc.), as well as the median (*)
and the IQR of the absolute values of the linear speed |v,|
and of the yaw rate |w,|. Locations include San Cassiano
(SC), Forét Montmorency (FM), and the main campus of
Université Laval (UL).

Terrain N Loc. |0z](IQR) |@.|(IQR)
Vulpi [3]
CONCRETE 24 SC  0.56 (0.26) 0.00 (0.00)
DIRT ROAD 16 SC  0.56 (0.25) 0.00 (0.00)
PLOUGHED 60 SC  0.56 (0.26) 0.00 (0.00)
UNPLOUGHED 56 SC  0.56 (0.25) 0.00 (0.00)
BorealTC (ours)
ASPHALT 111 UL 0.46 (0.58) 0.01 (0.09)
FLOORING 423 UL  0.23 (0.05) 0.02 (0.09)
ICE 450 UL 0.24 (0.38) 0.27 (0.52)
SILTY LoAM 126 FM 0.00 (0.24) 0.10 (0.17)
SNOW 281 FM 0.00 (0.31) 0.10 (0.26)

tation' to Python. To ensure a fair comparison with the
baseline from Vulpi et al. [3], we kept the same pipeline
parameters, using five folds for the cross-validation, with
partitions and sample durations set at 5s and 1.7s, respec-
tively. Our pipeline implementation was then validated by
running it on the Vulpi dataset. In line with our Python-
based pipeline, we implemented our models with PyTorch
Lightning,” thereby facilitating replicability and adhering to
prevailing standards in deep learning.

Our CNN and Mamba classifiers were trained, validated,
and tested on the Vulpi and the BorealTC datasets, as
well as on the combination of both datasets. In each sce-
nario, channel-wise normalization was performed using the
minimal and maximal values derived from the training data.

For the combined dataset, downsampling each similar sen-
sor to the smallest available frequency was necessary for the
CNN to ensure that the dimensions of the spectrograms were
compatible. Hence, we resampled our IMU data to 50 Hz
and the wheel data from Vulpi to 6.5 Hz. It is important to
note that this downsampling step was not needed for Mamba,
as it can handle varying frequencies without requiring ad-

Inttps://github.com/PhObi0/T_DEEP
2https://github.com/Lightning-AI/lightning

justments. We kept the original labels from both datasets,
resulting in a classification on nine terrain types.

For our CNN, we first applied a convolution layer with a
kernel of size of one, effectively applying a Multilayer Per-
ceptron (MLP) individually to each frequency-time element
across all channels. Subsequently, the network sequentially
applied a batch normalization (BN) layer, followed by a con-
volution layer with a kernel of size of three, and another
BN. Finally, predictions were generated by applying a fully
connected layer on the flattened feature maps.

For our Mamba classifier, we used two branches to treat
the IMU and wheel velocity data separately. Each branch
consists of a fully connected layer used to project the in-
put data to a high-dimensional feature space, followed by
a Mamba block. This larger feature space enhances training
stability, as the latent representation can be encoded on ad-
ditional channels. Using two branches allows the models to
handle both data types independently, without requiring pre-
processing steps such as padding or downsampling for input
compatibility. While multiple Mamba blocks can be stacked
one after the other, we found that it did not improve the
model’s performance; we thus only used one Mamba block
per branch. As Mamba is a causal model, we follow Gu et al.
[15] and only keep the final hidden state of each block. To
predict the terrain type, we concatenate the final hidden states
of both branches and feed them to a fully connected layer.

Our classifiers were trained on an NVIDIA RTX A6000
GPU, an AMD Ryzen Threadripper 3970X 32-core CPU,
and 128 GB of RAM. For the training phase, we utilized a
further subdivision of 10 % dedicated to validation, allowing
us to monitor the models’ performances during training. Our
source code and the BorealTC dataset are publicly avail-
able in our BorealTC repository.’ In addition, all training
details, including hyperparameters and model checkpoints,
are given in the same repository.

V. RESULTS

This section presents the performance of our models on
both evaluated datasets. For all models, we reported the fol-
lowing metrics over all folds: the precision, the recall, the
F1 score, and the accuracy. We then analyze the influence of
the train dataset size on the test error of our models. Finally,
we discuss the labeling of both datasets by comparing the
latent space of both datasets.

3https://github.com/norlab-ulaval/BorealTC
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A. Models performance

To quantitatively assess the performance of our classifiers,
we tested them on the Vulpi and the BorealTC datasets,
as well as on the combination of both datasets. All reported
metrics are averaged over 5-fold cross-validation. Table II
gives the performance of our CNN and Mamba classifiers
on Vulpi. Our CNN is 2.62 %pt more accurate than the
implementation of Vulpi et al. [3], reported at 91.5 %. An
ablation study determined that the use of a Hamming win-
dow increased the accuracy by 0.6 %pt, while the rest of the
improvement is due to better hyperparameter optimization.
It can be seen from the metrics that the CNN outperforms
Mamba on Vulpi. Since the dataset of Vulpi ef al. [3] is
small, we conjecture that the CNN has an innate advantage
due to its stronger inductive bias and the direct utilization of
spectrograms.

TABLE II: Results on the Vulpi dataset.

Precision Recall F1 score Accuracy

Terrain %) %) %) ()
CNN

CONCRETE 99.21 95.27 97.20

DIRT ROAD 92.40 92.05 92.22 94.12
PLOUGHED 96.94 98.96 97.94
UNPLOUGHED  88.20 90.48 89.32

Mamba

CONCRETE 87.13 83.33 85.19

DIRT ROAD 91.34 83.90 87.46 86.76
PLOUGHED 93.93 96.67 95.28
UNPLOUGHED 76.08 83.93 79.81

Table III compares the performance of both classifiers on
our larger dataset. Although the CNN demonstrates higher
accuracy, the difference with Mamba is not as pronounced as
in Table II. We surmise that Mamba’s performance catches
up to the CNN due to the significantly larger size of
BorealTC, approximately nine times that of Vulpi. On
the other hand, the CNN achieves comparable performance
on both datasets, albeit being less accurate on BorealTC.
We attribute this lower accuracy to the higher complexity of
our dataset, in terms of terrain types and input commands.

B. Impact of train dataset size on model performance

In light of Mamba’s close brush with CNN in Section V-
A, we performed an ablation study to examine the impact
of train dataset size on test error. To increase the amount of
available data for the ablation, we used the combined dataset
detailed. We generated several decimated training sets, with
ratios of % %, é and 1—16 with respect to the complete dataset.
For each subset, we applied a stratified fold strategy to main-
tain the same class distribution. The test error percentage was
then obtained over a 5-fold cross-validation. Figure 4 illus-
trates the impact of the train dataset size on the test error for
both classifiers. While CNN outperforms Mamba on smaller

TABLE III: Results on the BorealTC dataset.

Terrain Precision Recall F1 score Accuracy
(%) (%) (%) (%)
CNN

ASPHALT 92.98 83.89 88.20
FLOORING 97.29 98.70 97.99

ICE 9725 9811  97.68  93.96
SILTY LOAM  96.00 97.24 96.61

SNow 86.84 92.31 89.49

Mamba

ASPHALT 91.90 85.50 88.59
FLOORING 95.46 98.17 96.79

ICE 97.12 9736 9724  93.68
SILTY LOAM  95.39 96.20 95.79

SNOW 88.68 91.57 90.10

datasets, Mamba seems to be more accurate and could pos-
sibly surpass CNN on larger datasets, which aligns with our
observation in Section V-A. Mamba’s trend line closely fol-
lows a linear trend in log-log space, whereas the CNN trend
line is potentially sublinear. For both models, the trend fol-
lows a typical power-law curve. Yet, further studies may be
needed to determine whether these trends hold true for larger
datasets. Overall, the results suggest that performance is pre-
dominantly limited by the amount of training data, and not
by the quantity of sensor information or the learning capac-
ity of a classifier. Finally, we observed a worse performance
compared to the separate datasets, especially for CNN. This
could be due to overlaps between the classes in both datasets.
We investigate this behavior in the following section.
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Fig. 4: Influence of train dataset size on the test error in log-
log scale. Performance was assessed by combining Vulpi—
BorealTC. Bands show the IQR over 5 folds.

C. Latent space coherence between both datasets

When combining two TC datasets with distinct terrain
classes, it is important to ensure that each terrain is well
delineated, since the data from two terrain classes may share
common features, albeit being from two different datasets. To



assess this issue, we took advantage of having two different
datasets, both acquired by two similar vehicles, to determine
whether the labels in both datasets were properly delimited.
We used the t-distributed stochastic neighbor embedding
(t-SNE) technique [29] to visualize the latent space created
by our models, as seen in Figure 5. Specifically, t-SNE was
applied to project the features, extracted right before the fully
connected layer of our CNN, into 2-D space. This projection
allows us to visualize the proximity between labels of all
classes. The result of the t-SNE is interpreted with our field
observations and terrain descriptions from previous works on
the Vulpi dataset [ | 7]. In most cases, classes are grouped in
separate clusters, which means they are well-defined. Mean-
while, CONCRETE and ICE are each spread in three dif-
ferent clusters, whereas SILTY LOAM is dispersed between
CONCRETE, ICE, and FLOORING. This dispersion can be ex-
plained by different weather conditions or commanded body
velocities. The spread of the embeddings affects the perfor-
mance when both datasets are merged, as described in the last
section. Next, we can see that the data for ASPHALT, CON-
CRETE, and UNPLOUGHED are in the same region, meaning
that their labels coincide, as they are all hard rigid terrains.
Similarly, the embeddings for DIRT ROAD, PLOUGHED, and
SNOW are in the same zone, clustering as soft grounds. More-
over, we noted an adjacency between ICE and FLOORING
data, two hard grounds. This result has previously been ob-
served by Giguere et al. [19] with a legged robot. Further-
more, the ICE embeddings are close to SILTY LOAM, which
were both slippery during our experiments. Finally, even if
the terrains are accordingly grouped with their properties,
both datasets are still separated in the t-SNE visualization.
Indeed, apart from ASPHALT, all the classes from the Vulpi
dataset (with lighter labels) are in the lower region of the
t-SNE, while the classes from our dataset (with darker la-
bels) are in the upper region. We believe that this separation
indicates that both datasets are distinguishable, as they were
recorded with different vehicles and different experimental
procedures. As such, our classifiers have a harder time con-
solidating both datasets’ features, which agrees with the per-
formance hit noted in Section V-B. This observation could
be verified by applying a consistent recording procedure to
record various datasets on a standardized fleet of vehicles.

VI. CONCLUSION

In this paper, we introduced our BorealTC dataset for
proprioceptive-based terrain classification (TC), which is one
order of magnitude larger than its alternative. Our publicly
available dataset contains IMU, motor current, and wheel
odometry signals recorded with a Husky A200 over five
types of terrains, with a particular focus on boreal forests.
In particular, BorealTC contains annotated data on three
wintry terrain types, SNOW, ICE, and SILTY LOAM, all of
which are omnipresent in boreal forests. We confirmed the
capacity of a CNN and a Mamba classifier to classify ter-
rains on the Vulpi dataset [3] and our dataset. Moreover,
we showed that a spectrogram-based CNN excels on smaller
TC datasets, while Mamba performs well on increasingly

ghed

asphalt

dirt road

Fig. 5: An illustration of class proximity using t-SNE anal-
ysis from our CNN classifier trained on both datasets. Each
colored dot represents an embedding for a given class. Each
inset illustrates a terrain class in a dataset. The terrains of the
BorealTC dataset are indicated with black labels and pho-
tos from our experiments, while the terrains of the Vulpi
dataset are indicated with gray labels and insets from the
figures of Vulpi et al. [3].

larger datasets. Additionally, a t-SNE applied on a combined
TC dataset showed how embeddings of a type of terrain
cluster with embeddings of terrains with similar properties.
However, we determined that merging two datasets does not
yield a homogeneous mix of the terrain labels. Such division
could be caused by differing vehicles, sensors, and method-
ologies, meaning that the specificities of each dataset could
have guided the classification. Future research should aim at
standardizing data acquisition procedures for TC. We believe
gathering various datasets by applying the same experimen-
tal procedure on similar vehicles enables proper datasets for
TC without providing dataset-specific hints to classifiers. We
surmise that this need for standardized TC experiments is
aligned with the requirement for standardized terrain-aware
vehicle characterization [13], as well as models that can clas-
sify terrains in any given biome. Finally, while we suggest
that proprioception is all you need for TC, further research is
needed to compare the performance of proprioceptive-based
TC in boreal contexts with other architectures and modalities.
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