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Abstract—In subarctic and arctic areas, large and heavy
skid-steered robots are preferred for their robustness and abil-
ity to operate on difficult terrain. State estimation, motion con-
trol and path planning for these robots rely on accurate odome-
try models based on wheel velocities. However, the state-of-the-
art odometry models for skid-steer mobile robots (SSMRs) have
usually been tested on relatively lightweight platforms. In this
paper, we focus on how these models perform when deployed
on a large and heavy (590kg) SSMR. We collected more than
2km of data on both snow and concrete. We compare the
ideal differential-drive, extended differential-drive, radius-of-
curvature-based, and full linear kinematic models commonly
deployed for SSMRs. Each of the models is fine-tuned by
searching their optimal parameters on both snow and concrete.
We then discuss the relationship between the parameters, the
model tuning, and the final accuracy of the models.

Keywords-mobile robots, skid-steering vehicles, robot kine-
matics, winter

I. INTRODUCTION

Locomotion models are essential for many functionali-
ties in mobile robots. For instance, the prediction step in
Bayesian filters used in the state estimation for localization
purposes heavily relies on such models. They are also a cru-
cial component for path planners, which use them to identify
the action sequence the vehicle needs to execute to reach a
specific goal state. More importantly for our work, locomo-
tion models can be employed to improve the accuracy of
motion controllers. For instance, knowledge of the locomo-
tion model enables high-speed path following for SSMRs [1]
and the use of model-predictive control algorithms [2]. Con-
sequently, having access to a precise and robust locomotion
model is a key component of autonomy and safety in mobile
robotics.

Different steering methods have been developed for a
number of wheel geometries, a popular example being Ack-
erman [3]. However, these wheel geometries have inherent
kinematic constraints, such as a minimum turn radius. Alter-
natively, the SSMR locomotion type is designed specifically
to alleviate these constraints and offers high maneuverability
including zero-radius turning. The SSMR model operates
with a set of wheels or tracks on each side of the robot,
typically mechanically linked such that they have the same
rotational velocity. The difference in velocities between the
left and right wheels translates into a rotational motion of the
body of the robot, much like a differential-drive system. An

Figure 1: The wheeled skid-steer platform, a Warthog from
Clearpath, on a snow-covered testing site. Due to the steer-
ing type and the snow on the ground, the robot is very prone
to skidding and slippage, making the control and state esti-
mation of this system quite challenging.

example of a wheeled SSMR, used in this work, is shown
in Figure 1. Wheeled skid-steering locomotion systems have
proven to be suitable for driving at higher speeds on varying
terrain [1]. The simplicity and robustness of the mechanical
design, which includes no additional steering system, make
them relatively cheap and dependable for outdoor deploy-
ments [1].

Kinematic models, which define the relationship between
the wheel velocities and the robot velocity, are popular in the
literature due to their simplicity and robustness to inaccurate
parameter estimates [4]. However, the inherent slippage and
skidding of SSMRs render the motion difficult to predict
accurately through modeling.

In this work, we propose an experimental comparison of
kinematic models applied to a heavy SSMR. A special em-
phasis has been placed on operating on snow-covered terrain.
Because of several factors, such as uneven and unpredictable
ground interaction forces, SSMR motion on snow-covered
terrain can be particularly difficult to model. Modeling in
these snowy conditions has also been little explored. More-
over, heavy platforms, such as ours at 590 kg, may perform
differently than lighter platforms, even on uniform terrains
such as pavement or concrete. Indeed, to the best of our
knowledge, this is the first work to study the kinematic mod-
eling of SSMRs above 120 kg.
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In short, the main contribution of this work is an experi-
mental investigation of five kinematic models on challenging
terrains in order to:

1) validate their fitness for a heavier platform on a rela-
tively uniform concrete terrain;

2) evaluate their performance for snow-covered terrain
using more than 2 km of trajectories traveled; and

3) highlight the impact of angular motion on the accuracy
of SSMRs kinematic modeling.

II. RELATED WORK

As the motion of SSMRs has been heavily studied in the
literature, various kinematic models have been proven ac-
curate to describe their motion. However, the validation of
these models has been made with rather light-weight robots,
while larger and heavier robots make a more suitable choice
for deployments in adverse conditions, such as snow-covered
terrain because of their typically greater payload. The ques-
tion of whether these models can or cannot be transferred
to such heavy robots remains open.

To our knowledge, relatively few robotic deployments
have been conducted in snowy environments. Apostolopou-
los et al. [5] deployed the Nomad rover, a 725 kg four-wheel
drive (4WD) gasoline-powered vehicle, which achieved the
first autonomous discoveries of Antarctic meteorites. Ray
et al. [6] deployed the Cool Robot, a 61 kg solar-powered
robot that drove over 500 km in Antarctica. Gifford et al.
[7] deployed MARVIN I and MARVIN II, 720 kg diesel-
powered tracked rovers, which were used to conduct seismic
and radar remote sensing of ice sheets in polar regions. Lever
et al. [8] deployed the Yeti, an 81 kg 4WD electric-powered
rover in Antarctica and Greenland. The platform was used
to conduct autonomous ground-penetrating radar (GPR) sur-
veys in polar regions. Paton et al. [9] used a Clearpath
Robotics Grizzly unmanned ground vehicle (UGV) (660 kg)
to perform autonomous route-following in unstructured and
outdoor environments. They demonstrated the robustness of
the algorithms through extensive field deployments spanning
over 26 km. However, autonomous route-following in deep
snow provided unsatisfactory results.

It can be seen that most deployments on snow-covered ter-
rains were performed with relatively heavy robots. None of
the aforementioned work on autonomous rover deployment
in snow have extensively studied SSMRs motion modeling
in snow-covered terrain.

Because of the inherent slippage and skidding of SSMRs,
straightforward models that assume pure rolling and no slip-
page are not accurate enough to describe their motion [10].
Mandow et al. [10] thus proposed an extension of the ideal
differential-drive model, in which each set of wheels rotate
around their own instantaneous center of rotation (ICR).
Importantly, both ICRs are assumed to be constant for a
given terrain. They also included additional parameters to
take slippage into account. All parameters for this model

are identified offline empirically. They validated their model
with the Pioneer 3-AT robot, a 23.6 kg 4WD skid-steer plat-
form, on asphalt using three different sets of tires.

To produce online estimates of the wheel and SSMRs
ICRs, Pentzer et al. [11] tracked them individually using
an extended Kalman filter (EKF), through the inclusion of
position and heading measurements. They validated their al-
gorithm on a 118 kg skid-steer robot. Moosavian et al. [12]
and Wang et al. [13] proposed an experimentally-derived re-
lationship between the radii of curvature and the amount of
slippage for SSMRs motion. Wang et al. [13] validated their
approach on a wheeled SSMR, which is a Pioneer 3-AT.

Alternatively, Anousaki et al. [14] have proposed a gen-
eral linear model. This model does not take into account
any physical parameters of the robot and all parameters are
identified offline empirically. This model was validated on
a Pioneer 2-AT robot, weighing 23.6 kg.

Rabiee et al. [4] proposed a physically interpretable
friction-based kinematic model, which accounts for slippage
and skidding at the wheel level. This approach uses param-
eters of a dynamic friction model which are identified em-
pirically and offline. The authors used a Clearpath Robotics
Jackal platform (16 kg) for experimental validation.

As can be seen, all of the aforementioned models are
tested on relatively light platforms. However, many winter
field deployments of mobile robots, such as the ones men-
tioned above, use heavier platforms. Indeed, these larger and
more powerful platforms are generally employed to allow
for heavier payloads.

Thus, this work aims to experimentally validate the mo-
tion prediction accuracy of five kinematic models on snowy
terrain, with a heavy skid-steer mobile robot.

III. KINEMATIC MODELING OF SKID-STEER MOTION

Kinematic models for SSMRs aim to describe the speed
of the vehicle’s local frame by using two inputs: the angular
velocity of the left wheel ωl and of the right wheel ωr.
Kinematic models do not take into account the acceleration.
Direct kinematics for the vehicle ẋ on the plane (i.e., in 2D)
can be stated as follows:

ẋ =

[
v
ω

]
=

vxvy
ω

 = j(ωl, ωr), (1)

where j(·) is the kinematic model linking the inputs to the
vehicle’s translational velocity v and angular velocity ω, as
shown in Figure 2. The estimation of the kinematic states ˆ̇x
can be computed from sensor measurements y and a Jaco-
bian J expressed as a function of fixed parameters k, such
that

ˆ̇x = J(k)y, (2)

with y = [ωl, ωr]
T . Based on this relation, we will define

different models only by expanding the matrix J and its
associated vector of parameters k.
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Figure 2: Diagram of a skid-steer vehicle. The instantaneous
centers of rotation of the body (in blue) and tracks (in red)
are shown as cv , cl and cr.

A. Ideal differential-drive

The simplest model that could be used to predict the mo-
tion of an SSMR is an ideal differential-drive model ex-
pressed as

J = r

 1/2 1/2

0 0

−1/b 1/b

 , (3)

where r is the radius of the wheels and b is the width of the
vehicle, as shown in Figure 2.

This model works well for two-wheeled mobile robots
that have an ICR aligned with the center of each wheel.
However, this model may be inefficient at predicting skid-
steering behavior because it assumes that there is no lateral
skidding or longitudinal slipping. Nevertheless, it is easy to
implement and only depends on the measurable properties of
the robot such as the wheel radii and the width of the robot.

B. Extended differential-drive

The lack of skid modeling from the ideal differential-drive
model pushed Mandow et al. [10] to propose the extended
differential-drive model for SSMRs. This model states that
each set of wheels has a separate ICR, that lies on a line
parallel to the local y-axis also containing the ICR of the
vehicle body. This is shown via the red lines in Figure 2.
This model assumes that the position of each ICR is terrain-
dependant, but constant if the terrain remains constant. The
two sets of wheels are also assumed to have the same angular
velocity ω as the vehicle’s body in the horizontal plane. If
one has access to the true state ẋ, this allows the relation be-
tween the ICRs positions and the translational and rotational

velocities to be geometrically identified, as expressed by

cv(ẋ) =

[
xv

yv

]
=

1

ω

[
−vy
vx

]
(4)

cl(ẋ, ωl) =

[
xv

yl

]
=

1

ω

[
−vy

αl(rωl − vx)

]
(5)

cr(ẋ, ωr) =

[
xv

yr

]
=

1

ω

[
−vy

αr(rωr − vx)

]
, (6)

where αl, αr ∈ [0, 1] are slip parameters to take into account
the mechanical characteristics of the wheels [10]. Since we
do not have access to ẋ, as we aim at estimating it, we
can use (4)-(6) to express the Jacobian of the extended
differential-drive kinematic model in terms of ICRs coordi-
nates, such that

J(αr, αl, xv, yr, yl) =

r

yl − yr

−yr yl

xv −xv
−1 1

[αl 0

0 αr

]
. (7)

For a symmetric robot, we can simplify the model by making
the assumptions that the ICRs are symmetric concerning the
center of the robot (i.e., y0 = yl = −yr and xv = 0) and
that each set of wheels have the same slip parameter (i.e.,
α = αl = αr). This symmetric extended differential-drive
model will have a Jacobian in the form of

J(α, y0) =
rα

2y0

 y0 y0

0 0

−1 1

 = rα

 1/2 1/2

0 0

−1/b̂ 1/b̂

 (8)

= J(α, b̂) with b̂ = 2y0. (9)

In this case, the model only has two parameters to train, a
slip parameter α and an estimated virtual width of the vehi-
cle b̂. As with the ideal differential-drive model, the symmet-
ric extended differential-drive model from Equation (9) still
assumes that there is no lateral skidding (i.e., vy = 0 ), but
it is capable of modeling longitudinal slipping and loss of
energy while steering. In this work, both the five-parameter
and the symmetric two-parameter extended differential drive
models are examined.

C. ROC-based

Wang et al. [13] experimented with SSMR to find a re-
lation between slippage and the radius of curvature (ROC)
of the motion. Looking at the previous model from Equa-
tion (8), since vy = 0, it can be seen that the instantaneous
radius of curvature of the robot is

R =
vx
ω

=

∣∣∣∣ωr + ωl
ωr − ωl

∣∣∣∣ y0 = λy0, (10)
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where λ is the time-varying path curvature variable. Through
experiments, Wang et al. [13] identified the following rela-
tion between y0 and λ with

y0 =
b

2

(
1 +

β1

1 + β2
√
λ

)
, (11)

where β1 and β2 are parameters trained experimentally, giv-
ing the new Jacobian J(α, β1, β2) following Equation (8)
and Equation (11). Since λ is time-varying, the model adapts
as a function of the ROC, in contrast with the other models.
However, this model still does not address lateral skidding.

D. Full linear

Anousaki et al. [14] proposed a general linear model to
account for some of the system’s uncertainty and asymmetry
inherent to SSMR expressed as

J(γ11, · · · , γ32) =

γ11 γ12

γ21 γ22

γ31 γ32

 , (12)

where γij are the linear coefficients to be trained, leading to
a model with six parameters. Unlike the previous models,
this model requires no a priori knowledge of the system,
and relies entirely on parameters estimated through training.

IV. EXPERIMENTAL SETUP

To compare the presented models, we collected data using
a Clearpath Warthog UGV, as shown in Figure 1. Weighing
590 kg, its dimensions are 1.52m× 1.38m× 0.83m and
can reach a top speed of 18 km/h. As the robot has a skid-
steering locomotion system, the wheels on each side of the
robot are mechanically linked to a single motor. The robot is
also equipped with a differential suspension, stabilizing the
sensors and improving wheel-ground contact. A Robosense
RS-32 lidar located at the front of the platform is used
for localization. During the experiments, the lidar produced
point clouds at 10Hz, the wheel velocity commands are sent
at 20Hz and the Inertial Measurement Unit (IMU) returns
readings at 400Hz. The recorded data is then used for gener-
ating the ground truth trajectory using the Iterative-Closest-
Point (ICP) algorithm. Importantly, a different trajectory was
recorded for model training and validation.

We tested the models on two different types of surface: a
flat concrete surface and a snow-covered terrain. As can be
seen in Figure 3a and Figure 3b, these environments present
radically different physical properties. In the first one, the
robot drives on flat and dry concrete in an underground park-
ing lot. Due to the high friction coefficient and the hardness
of the ground, the skid-steering motion is induced by wheel
deformation. Furthermore, the stick-slip phenomenon intro-
duces additional unmodeled noise.

On the other hand, the snow-covered terrain is soft and
exhibits low friction, meaning that the skid-steering motion
is induced by terrain deformation. Additionally, the terrain

(a) (b)

(c) (d)

Figure 3: Different road surface conditions used in experi-
ments. (a) Underground parking lot with a dry concrete sur-
face. (b) Snow-covered terrain. (c) The resulting map of the
underground parking lot with one of the robot’s trajectories
plotted in red. The experimental area is surrounded by con-
crete pillars connected by a safety tape. (d) The resulting
map of the snow-covered terrain with one of the robot’s
trajectories plotted in red.

unevenness adds unmodeled noise to the skid-steering mo-
tion when operating at high speeds. To better train and eval-
uate all of the the models, the trajectories were planned in a
way to maximize the excitement range and coverage of the
model input variables (i.e., left and right wheels commanded
angular velocities). Some parts of these trajectories obtained
by the ICP mapping algorithm are presented in Figure 3c
and Figure 3d.

In order to obtain an accurate location of the platform to
compare the different models, we used the ICP algorithm.
This algorithm allows for accurate odometry measurements,
by registering 3D point clouds together [15]. Because of
its few centimeters margin of error, it was not necessary to
resort to more precise measuring tools such as theodolites.
Moreover, since each platform trajectory is estimated with
identical ICP parameters, the magnitude of the localization
error will be the same for each of the models tested. As
a result, the ICP positioning and orientation errors will not
change the behavior of the different models tested. The li-
brary libpointmatcher [16] was used to compute ICP
offline, using a point-to-plane minimization.

To properly evaluate each model, it is necessary to train
for model parameters and evaluate model performance on
two separate trajectories. Our model training procedure is
similar to the two-step method proposed in [10]. The first
step is to obtain experimental data by driving the robot man-
ually, while recording commanded wheel velocities and sen-
sor measurements. The data is then processed offline to com-
pute the ground truth localization, using the ICP algorithm.
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The training path is then split into N distinct segments corre-
sponding to a total traveled distance of ht. The commanded
wheel velocities corresponding to each of the N segments
are then used to predict the robot’s motion, starting from
the initial position of the corresponding segment. The final
model-predicted position of the robot is then compared with
the ground truth position for each segment. Our loss function
l(·) is the sum of N squared Mahalanobis distances using

l(k) =

N∑
i=1

(x− x̂)TΣ−1(x− x̂), (13)

where x and x̂ are respectively the ground truth and model-
predicted state of the robot defined as its 2D position and its
orientation. The covariance matrix Σ is there to bring meters
for the position and radians for the orientation in a common
unitless value. In our case, we set this covariance to identity.
The set of parameters for each model is represented by the
vector k. An optimization algorithm is then used to search
for the set of parameters k minimizing the loss function l(·).

Previous work on model parameter identification for
SSMR relied on temporal horizons for ground truth trajec-
tory segmentation [4], [10], [17]. We investigated two dif-
ferent strategies when splitting the ground truth trajectory:
by using a temporal and a spatial horizon. In particular, we
found that using a spatial horizon for model parameter opti-
mization allowed for the easy removal of outlier data gener-
ated when zero velocity commands were given to the robot.
The trained models are then evaluated using two different
metrics: the relative error of the translational prediction εt
and the relative error of the angular prediction εθ, respec-
tively computed as the translational error and angular error
the predictor does per meter. These two metrics are com-
puted on the evaluation horizon he over the entire evaluation
trajectories, as in [18].

V. RESULTS

In order to fine-tune and evaluate the different models,
we first determine the impact of the training and evaluation
horizon ht and he on the model performance. Once the best
horizons are chosen, the models are trained and compared
in both linear and angular errors. We then deepen our study
with the most promising model, the differential drive sym-
metric model, by looking at the relation between the errors
and the commands sent to the robot.

In order to determine the impact of the training horizon
ht and the evaluation horizon he on the performance, we
trained every model for various values for ht and evaluated
the translational error εt for various horizons he. Except for
the ROC-based model, which did not react to a variation in
training horizon ht, the error εt of the different models had
a similar behavior when the values for the horizons ht and
he were varying. As an example, the translational error εt
values of the extended differential-drive asymmetric model

prediction for varying training and evaluation horizons are
shown in Figure 4.
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Figure 4: Relative translational error εt of the extended
differential-drive asymmetric model in a snowy environment,
as a function of the evaluation horizon window he for differ-
ent training windows ht. Left: Median of the relative linear
error. Right: Interquatile range of the relative linear error.

We can first observe that the model error εt behaves
differently depending on the training horizon ht. Models
trained on smaller horizons offer better performances at
lower evaluation horizons while they suffer at higher evalua-
tion horizons. This indicates that the model training horizon
ht should be chosen in accordance with the application of
the model. In robotics applications, controllers mainly use
small horizon. Thus, the training and the evaluation horizons
should mainly use small horizons.

It can be seen in Figure 4 that training horizons of 2m or
5m quickly converge to a small error compared to longer
training horizons, while not suffering of high error for long
evaluation horizons as much as smaller training horizons.
For this model, the 15m ht also shows quick convergence
but this effect is only observed for the extended differential-
drive asymmetric model on snow. Furthermore, all the me-
dian curves assume similar values at he = 2m. The initial
error for he approaching 0m is caused by the combined
measurement noise of the wheel velocities and our ground
truth. Hence, taking an evaluation horizon of 2m leads to
a certain invariance of the error εt on the training horizons.
Also, longer evaluation horizons he tend to introduce a high,
interquartile range for predicting the errors εt, meaning that
the evaluation is very dependant on the state of the robot.
As we want to evaluate the models on complex trajectories,
an evaluation horizon of he = 2m is chosen for the rest of
this work. The evaluation trajectories differ from the train-
ing trajectory but meet the same goal of maximizing model
input excitement range and coverage. We have used this ht
to train for all model parameters using the parameter iden-
tification method described in Section IV. The overview of
the parameters can be found in Table I.
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Table I: Summary of parameters used and trained for each
model. For all models, the wheel radius r is equal to 0.3m.

Model Trained concrete Trained snow Bounds

DD with b = 1.2 m – – –

Extended α = 0.94 α = 0.86 ∈ [0, 1]

DD Symmetric b̂ = 4.46m b̂ = 3.08m ∈ [0,∞)

Extended αl = 0.90 αl = 0.81 ∈ [0, 1]

DD Asymmetric αr = 0.92 αr = 0.84 ∈ [0, 1]

xv = −2.57m xv = −2.71m ∈ R
yl = 4.66m yl = 3.00m ∈ [0,∞)

yr = −5.00m yr = −3.85m ∈ (−∞, 0]

ROC α = 0.91 αl = 0.80 ∈ [0, 1]

with b = 1.2 m β1 = 42.73 β1 = 1.36 ∈ R
β1 = 11.09 β2 = −0.18 ∈ R

Full linear γ11 = 0.47 γ11 = 0.46 ∈ R
γ12 = 0.44 γ12 = 0.36 ∈ R
γ21 = −0.22 γ21 = −0.31 ∈ R
γ22 = 0.26 γ22 = 0.34 ∈ R
γ31 = −0.10 γ31 = −0.13 ∈ (−∞, 0]
γ32 = 0.08 γ32 = 0.12 ∈ [0,∞)

Legend: DD = Differential drive.

The translational errors εt and angular errors εθ for this
experiment are shown in Figure 5 and Figure 6. In them,
the median and quartiles at 25% and 75% are depicted with
the gray box, while the underlying curves show the data
distribution. In Figure 5, we can see that the residual errors
for the ideal differential-drive model are much higher than
for any of the trained models. Indeed, the differential-drive
model does not take the slippage and skidding phenomenom,
leading to high errors for SSMRs. It can be observed that
the ideal differential drive performs better on snow that on
concrete. This shows that SSMRs motion is closer to that of
an ideal differentially driven robot when operating on snow-
covered terrain than when operating on concrete.

Figure 6 shows in greater details the distribution of er-
rors for the four trained models. There, it can be seen that
except for the ROC-based one, all models tend to perform
similarly. The model prediction error is similar for both
snow (blue) and concrete (red). Furthermore, the extended
differential-drive asymmetric and full linear models offer the
best linear displacement predictions, which is due to the fact
that they account for lateral motion. However, the extended
differential-drive symmetric model offers more accurate an-
gular displacement prediction while offering slightly inferior
accuracy for translational displacement prediction than other
kinematic models presented in this work. The fact that it
only has two parameters to be trained makes it an interesting
choice for skid-steering locomotion modeling. Indeed, fewer
parameters lead to a smaller computational cost for training,
and such a model is less prone to converge into a local
minimum as the search space is smaller. Furthermore, richer
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Figure 5: Overall errors of the differential-drive model and
the trained models, combined in a single distribution. As
expected, the trained models perform vastly better, as they
take into account the wheel ground contact interactions.

models can also suffer from overfitting on the training data,
which is less likely to happen with fewer parameter models.

It should be noted that the symmetry hypothesis underly-
ing many models is very close to reality for our platform.
This is understandable, as our vehicle is almost symmetric in
design and the added components add negligible mass to the
system. A SSMR not respecting this constraint would require
the use of a model that allows for the asymmetry, such as
the extended differential-drive asymmetric model or the full
linear model, but at the cost of a higher model dimension-
ality, therefore bearing the aforementioned disadvantages.

In order to highlight the differences of wheel-ground in-
teractions between the snow and the concrete, we measured
the actual rotation of the robot for a series of given com-
mands. Figure 7 shows the measured angular displacement
given the commanded angular displacement for the evalua-
tion trajectories on snow and concrete. As a lot of data was
collected, the median and the quartiles at 25% and 75% were
computed to ease the reading.

It can be seen that for low commanded angular displace-
ment, the robot behaves similarly on snow and on con-
crete. However, for commanded angular displacements of
over 30◦, the curve for resulting angular displacement grows
faster when the robot is operated on snow than on concrete.
A drop in measured angular displacement for high angular
displacement commands can also be seen for snow-covered
terrain. This result suggests a nonlinear effect in SSMRs
motion on snow-covered terrain which could be hard to de-
scribe with linear kinematic models. Additionally, interquar-
tile range is generally stable for both terrain types but higher
on concrete than on snow, showing that for a specific an-
gular displacement command, the range of possible angular
displacement actually done by the SSMR is higher on con-
crete than on snow. Higher speeds were not reached for the
concrete trajectory because of safety purposes. The lack of
data for zero commanded angular velocity is due to a combi-
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Figure 6: Overall error of the models depending on which environment the robot evolved in.
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Figure 7: Actual rotation over one meter as a function of the
difference of wheel velocity. The median is represented with
a straight line, where the shaded zones represent the quartiles
at 25% and 75%. Because of the low friction coefficient
of the snow, the robot tends to rotate more for the same
command compared to concrete.

nation between the choice of a spatial evaluation window he
= 2m and the trajectory planning aiming to maximize com-
manded wheel velocities range and coverage, leading to no
window with zero commanded angular displacement. It can
be observed that for small angular displacement commands,
the robot can have a higher angular displacement than the
commanded one. This could be due to two phenomena: as
the robot was driven at high velocities on uneven, snow-
covered terrain, the suspension was not able to compensate
for the vibrations leading to a loss of contact between the
wheels and the ground. This additional noise in the com-
mand led the robot to slightly turn in straight lines. Also,
the high momentum of the robot sometimes caused it to
continue to turn in end of turns even if the actual command
had a null angular displacement. In addition, the relative
translational displacement is constant for every commanded
linear displacement and is the same for snow and concrete.
This shows that the angular displacement is the main factor
of error while commanding SSMRs.

As demonstrated before, the best model in our case is
the extended differential drive symmetric. The study of this
model is then deepened to the study of the angular error.
Indeed, the linear error was independent of the given com-
mands in our study.
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Figure 8: Relative angular error for the extended differen-
tial drive symetric model on snow. We observed a similiar
behavior on the concrete.

An analysis of relative errors in prediction was conducted
for the extended differential-drive symmetric model on both
snow and concrete. The prediction error was computed for
every evaluation trajectory segments, as well as the corre-
sponding wheels angular velocities commands. This way, we
were able to determine that the relative translational predic-
tion errors εt were uncorrelated with mean angular velocity
commands for each side. However, angular prediction errors
εθ were correlated with mean angular velocity commands, as
can be seen in Figure 8. It can be observed that the prediction
error reaches its maximum in the areas when either side’s
commanded wheel velocity is about twice that of the other
side. In particular, we see a steep increase in the prediction
relative angular error in the high error areas. This suggests
a non-linearity in the relationship, which cannot be captured
by any of the linear models tested.
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VI. CONCLUSION

In this paper, we compared five different kinematic models
to describe the motion of a 590 kg SSMR platform both
on concrete and on a snow-covered terrain. We have shown
that the model training horizon should be selected based on
the model’s application. We have compared the prediction
accuracy of five kinematic models for SSMRs. We have also
highlighted differences in the behavior and model-prediction
error of SSMRs when operating on the two different terrain
types. We have also identified commanded angular wheel
velocity sets that induce high prediction errors of angular
displacement. As future work, we aim to implement more
advanced models and to develop a path-following algorithm
robust to multiple terrain types for a given trajectory.
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